PHYSICAL CHEMISTRY

DPP No. 9

Total Marks: 49

Max. Time: 54 min.

Topic: Mole Concept

Type of Questions		M.M., Min.
Single choice Objective ('-1' negative marking) Q.2,4,5	(3 marks, 3 min.)	[9, 9]
True or False (no negative marking) Q.6	(2 marks, 2 min.)	[2, 2]
Subjective Questions ('-1' negative marking) Q.7, 8 & 10	(4 marks, 5 min.)	[12, 15]
Short Subjective Questions ('-1' negative marking) Q.1,3,6,10	(3 marks, 3 min.)	[9, 9]
Match the Following (no negative marking) (2 × 4) Q.9	(8 marks, 10 min.)	[8, 10]
Comprehension ('-1' negative marking) Q.11 to Q.13	(3 marks, 3 min.)	[9, 9]

- 1. If the mass of one atom of an element X is about 6×10^{-23} g, how many moles of X are equivalent to 144 g of X?
- 2. The atomic weight of an element is 'a'. If this element occurs in nature as a triatomic gas, then the correct formula for the number of moles of gas in its 'w' g is:
 - (A) $\frac{3w}{a}$
- (B) $\frac{w}{3a}$
- (C) 3wa
- (D) $\frac{a}{3w}$
- 3. Find the total number of protons in 11.2 L of phosphine (PH₃) gas under NTP conditions.
- 4. The density of water at 4° C is 1×10^{3} kg m⁻³. Assuming no empty space to be present between water molecules, the volume occupied by one molecule of water is approximately:
 - (A) 3×10^{-23} mL
- (B) $6 \times 10^{-22} \text{ mL}$
- (C) 3×10^{-21} mL
- (D) 9×10^{-23} mL
- 5. The density of air at STP is 0.001277 g mL⁻¹. Its vapour density is about :
 - (A) 143
- (B) 14.3
- (C) 1.43
- (D) 0.143
- **6.** State whether the following statements are true or false :
- (i) According to law of definite proportions, two elements always combine in the same ratio by mass.
- (ii) Different proportions of oxygen for a fixed mass of nitrogen in the various oxides of nitrogen prove the law of multiple proportions.
- (iii) If 2.8 L of an unknown gas at NTP weighs 5.5 g, then the gas could be CO₂ or N₂O.
- (iv) 5 g urea (NH₂CONH₂) and 5 g Acetic acid (CH₂COOH), both contain the same total number of atoms.
- 7. An oxide of Osmium (symbol Os) is pale yellow solid. If 2.794 g of the compound contains 2.09 g of osmium, what is its empirical formula ? (At. wt. of Os = 190)
- **8.** When Dinitrogen pentaoxide (N₂O₅, a white solid) is heated, it decomposes into nitrogen dioxide and oxygen.

If a sample of N₂O₅ produces 1.6 g O₂, then how many grams of NO₂ are formed ?

$$N_2O_5(s) \xrightarrow{\Delta} NO_2(g) + O_2(g)$$
 (not balanced)

9. Match the following:

Column-I

For 1 mole of reactant placed in an open container in each reaction Column-II

Product

- (A) $PCl_{s}(g) \xrightarrow{\Delta} PCl_{s}(g) + Cl_{s}(g)$
- (p) 2N, molecules are produced
- $CaCO_3$ (s) $\stackrel{\triangle}{\longrightarrow}$ $CaO(s) + CO_3$ (g) (B)
- (q) 67.2 litre gaseous product at STP
- 2HCl (g) $\stackrel{\triangle}{\longrightarrow}$ H₂ (g) + Cl₂ (g) (C)
- 22.4 litre gaseous product at STP (r)
- $NH_{3}COONH_{2}(s) \xrightarrow{\Delta} 2NH_{3}(g) + CO_{2}(g)$ (D)
- 44.8 litre gaseous product at STP (s)
- 10. An alloy of iron and carbon was treated with sulfuric acid, in which only iron reacts:

$$2Fe(s) + 3H2SO4(aq) \longrightarrow Fe2(SO4)3(aq) + 3H2(g)$$

If a sample of alloy weighing 140 g gave 6 g of hydrogen, what is the percentage of iron in the alloy?

Comprehension # (Q. 11 to Q. 13)

lodine is an important substance needed by the body of a human being. We consume it in the form of salt, which has very-very small % content of I2. lodine has various industrial applications also. The following process has been used to obtain iodine from oil-field brines in California:

$$NaI + AgNO_3 \longrightarrow AgI + NaNO_3$$

$$AgI + Fe \longrightarrow FeI_2 + Ag$$

$$FeI_2 + Cl_2 \longrightarrow FeCl_3 + I_2$$

- 11. If 381 kg of iodine is produced per hour, then mass of AgNO₃ required per hour will be :
 - (A) 170 kg
- (B) 340 kg
- (C) 255 kg
- (D) 510 kg
- 12. If above reaction is carried out by taking 150 kg of NaI and 85 kg of AgNO₃, then number of moles of iodine formed is:
 - (A) 0.5
- (B) 500
- (C) 250
- (D) 0.25
- 13. If 324 g of Ag is recovered in pure form, then minimum amount of NaI required will be:
 - (A) 450 g
- (B) 150 g
- (C) 300 g
- (D) 600 g

nswer K

DPP No. #9

9 N.

- 1.
- 2. (B)
- 3.
- 4.
- (A)

9.2g

12.

(B)

- (i) False (ii) True (iii) True (iv) True 6.
- 7. OsO,
- 8.

- 9. (A - p,s); (B - p,r); (C - r); (D - q).
- 10.
- 80%. 11.
- (D)
- (C)
- 13. (A)

5.

Hints & Solutions

DPP No. #9

1.
$$1.66 \times 10^{-24} \text{ g} \longrightarrow 1 \text{ amu}$$

∴ 6 × 10⁻²³ g
$$\longrightarrow \frac{6 \times 10^{-23} \times 1}{1.66 \times 10^{-24}} = 36 \text{ amu}$$

.. Atomic mass of X = 36 amu

∴ Moles of X =
$$\frac{144}{36}$$
 = 4

2. Molecular wt. of gas = 3a
no. of moles of gas =
$$\frac{w}{3a}$$
.

3. Total number of protons =
$$\frac{11.2}{22.4} \times 18 \times N_A = 9N_A$$

$$d = \frac{\text{mass}}{\text{volume}}$$
, So, volume = $\frac{3 \times 10^{-23} \text{ g}}{1(\text{g/mL})} = 3 \times 10^{-23} \text{ mL}$.

5. molecular weight of air at STP = 0.001293 g mL⁻¹ × 22400 mL = 28.7 g
so V.D. =
$$\frac{28.7}{2} \approx 14.3$$

According to law of definite proportions, two elements always combine in the same ratio by mass, only if they form the same compound.

$$\frac{2.8}{22.4} \times M_{(g)} = 5.5 g.$$

So,
$$M_{(g)} = 44$$
. (CO₂ or N₂O).

Total number of atoms =
$$\frac{5}{60} \times N_A \times 8 = \frac{2N_A}{3}$$
 (in both cases).

wt. of oxygen =
$$2.89 - 2.16 = 0.73$$
 g

Mole of osmium =
$$\frac{2.16}{190}$$
 = 0.01136 and mole of oxygen = $\frac{0.73}{16}$ = 0.04562

so relative mole of osmium =
$$\frac{0.01136}{0.01136}$$
 = 1

relative mole of oxygen = $\frac{0.045625}{0.01136}$ = 4 so, empirical formula = OsO4.

8.
$$N_2O_5(s) \xrightarrow{\Delta} 2NO_2(s) + \frac{1}{2}O_2$$
 (Balanced reaction)
$$\frac{\text{Mole of }O_2}{1/2} = \frac{\text{Mole of }NO_2}{2}$$

$$\frac{1.6}{32} \times 2 \times 2 = \text{Mole of }NO_2 = 0.2$$
wt of $NO_2 = 0.2 \times 46 = 9.2 \text{ g}$.

9. (A)
$$PCl_5(g) \xrightarrow{\Delta} PCl_3(g) + Cl_2(g)$$

1 mole 1 mole 2 mole molecule $\equiv 2N_A$ molecule $\equiv 22.4 \times 2 = 44.8 \text{ L at STP}$

(C)
$$2HCI(g) \xrightarrow{\Delta} H_2(g) + CI_2(g)$$

1 mole 0 0 $\frac{1}{2}$ mole $\frac{1}{2}$ mole

1 mole = 22.4L at STP

(D)
$$NH_4COONH_2(s) \xrightarrow{\Delta} 2NH_3(g) + CO_2(g)$$

1 mole 0 0
0 2 1
Total mole = 3
volume = 3 × 22.4 L = 67.2 L at STP

10.
$$2Fe(s) + 3H_2SO_4(aq) \longrightarrow Fe_2(SO_4)_3(aq) + 3H_2(g)$$

Moles of
$$H_2 = \frac{6}{2} = 3$$
 mole

Moles of Fe =
$$\frac{3}{3} \times 2 = 2$$

mass of Fe =
$$2 \times 56 = 112 g$$
.

मिश्र धातु में Fe का प्रतिशत =
$$\frac{112}{140} \times 100 = 80\%$$
.

11. Moles of I₂ produced =
$$\frac{381 \times 10^3}{254} = \frac{3 \times 10^3}{2}$$

for this much moles of I_2 , moles of AgNO₃ required = $\frac{3}{2} \times 2 \times 10^3$

12. moles of NaI =
$$\frac{150}{150} \times 10^3 = 10^3$$

moles of AgNO₃ =
$$\frac{85}{170} \times 10^3 = 5 \times 10^2$$

$$\therefore \quad \text{moles of } I_2 \text{ formed} = \frac{\text{moles of AgNO}_3}{2} = \frac{5 \times 10^2}{2} = 250$$

13. Moles of Ag recovered =
$$\frac{324}{108}$$
 = 3

Hence moles of NaI required to produce this Ag = 3

